Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Buzzi, A., Davolio, S., Malguzzi, P., Drofa, O. and Mastrangelo, D.
Abstract:
The Liguria coastal region in Italy was affected by two heavy rainfall and consequent severe flood episodes that occurred at the end of October and beginning of November 2011. The very large accumulated precipitation maxima were associated, in both cases, with intense and quasi-stationary convective systems developed near the coast, both related to orographic lift and similar low-level mesoscale flow patterns over the Ligurian Sea, giving rise to pronounced convergence lines. This study aims at analyzing the main dynamical processes responsible for the onset, lifecycle, intensity and localization/propagation of the precipitating systems, using the ISAC convection-permitting model MOLOCH applied at different spatial resolutions and comparing model output fields with available observations. The ability of the model in forecasting quantitative precipitation (QPF) is tested with respect to initial analysis and model horizontal resolution. Although precipitation maxima remain underestimated in the model experiments, it is shown that forecast errors of QPF in both amount and position tend to decrease with increasing grid resolution. It is shown that model accuracy in forecasting rainfall amounts and localization of the precipitating systems critically depends, in both episodes, on the ability in representing the cold air outflow from the Po Valley to the Ligurian Sea, which determines the position and intensity of the mesoscale convergence lines over the sea. Such convergence lines controls, together with the lifting produced by the Apennines chain surrounding the coast, the onset of the severe convection.
Reference:
Buzzi, A., Davolio, S., Malguzzi, P., Drofa, O. and Mastrangelo, D., 2014: Heavy rainfall episodes over Liguria of autumn 2011: numerical forecasting experimentsNatural Hazards and Earth System Sciences, 14, 1325-1340.
Bibtex Entry:
@Article{Buzzi2014,
  Title                    = {Heavy rainfall episodes over Liguria of autumn 2011: numerical forecasting experiments},
  Author                   = {Buzzi, A. and Davolio, S. and Malguzzi, P. and Drofa, O. and Mastrangelo, D.},
  Journal                  = {Natural Hazards and Earth System Sciences},
  Year                     = {2014},

  Month                    = {May},
  Pages                    = {1325-1340},
  Volume                   = {14},

  Abstract                 = {The Liguria coastal region in Italy was affected by two heavy rainfall and consequent severe flood episodes that occurred at the end of October and beginning of November 2011. The very large accumulated precipitation maxima were associated, in both cases, with intense and quasi-stationary convective systems developed near the coast, both related to orographic lift and similar low-level mesoscale flow patterns over the Ligurian Sea, giving rise to pronounced convergence lines.

This study aims at analyzing the main dynamical processes responsible for the onset, lifecycle, intensity and localization/propagation of the precipitating systems, using the ISAC convection-permitting model MOLOCH applied at different spatial resolutions and comparing model output fields with available observations. The ability of the model in forecasting quantitative precipitation (QPF) is tested with respect to initial analysis and model horizontal resolution. Although precipitation maxima remain underestimated in the model experiments, it is shown that forecast errors of QPF in both amount and position tend to decrease with increasing grid resolution. It is shown that model accuracy in forecasting rainfall amounts and localization of the precipitating systems critically depends, in both episodes, on the ability in representing the cold air outflow from the Po Valley to the Ligurian Sea, which determines the position and intensity of the mesoscale convergence lines over the sea. Such convergence lines controls, together with the lifting produced by the Apennines chain surrounding the coast, the onset of the severe convection.},
  Copublication            = {5: 5 It},
  Doi                      = {10.5194/nhess-14-1325-2014},
  Owner                    = {hymexw},
  Timestamp                = {2016.01.07},
  Url                      = {http://www.nat-hazards-earth-syst-sci.net/14/1325/2014/nhess-14-1325-2014.html}
}