Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Cavicchia, L., Scoccimarro, E., Gualdi, S., Marson, P., Ahrens, B., Berthou, S., Conte, D., Dell'Aquila, A., Drobinski, P., Djurdjevic, V., Dubois, C., Gallardo, C., Li, L., Oddo, P., Sanna, A. and Torma, C.
Abstract:
Exploiting the added value of the ensemble of high-resolution model simulations provided by the Med-CORDEX coordinated initiative, an updated assessment of Mediterranean extreme precipitation events as represented in different observational, reanalysis and modelling datasets is presented. A spatiotemporal characterisation of the long-term statistics of extreme precipitation is performed, using a number of different diagnostic indices. Employing a novel approach based on the timing of extreme precipitation events a number of physically consistent subregions are defined. The comparison of different diagnostics over the Mediterranean domain and physically homogeneous sub-domains is presented and discussed, focussing on the relative impact of several model configuration features (resolution, coupling, physical parameterisations) on the performance in reproducing extreme precipitation events. It is found that the agreement between the observed and modelled long-term statistics of extreme precipitation is more sensitive to the model physics, in particular convective parameterisation, than to other model configurations such as resolution and coupling.
Reference:
Cavicchia, L., Scoccimarro, E., Gualdi, S., Marson, P., Ahrens, B., Berthou, S., Conte, D., Dell'Aquila, A., Drobinski, P., Djurdjevic, V., Dubois, C., Gallardo, C., Li, L., Oddo, P., Sanna, A. and Torma, C., 2016: Mediterranean extreme precipitation: a multi-model assessmentClimate Dynamics.
Bibtex Entry:
@Article{Cavicchia2016,
  Title                    = {Mediterranean extreme precipitation: a multi-model assessment},
  Author                   = {Cavicchia, L. and Scoccimarro, E. and Gualdi, S. and Marson, P. and Ahrens, B. and Berthou, S. and Conte, D. and Dell'Aquila, A. and Drobinski, P. and Djurdjevic, V. and Dubois, C. and Gallardo, C. and Li, L. and Oddo, P. and Sanna, A. and Torma, C.},
  Journal                  = {Climate Dynamics},
  Year                     = {2016},

  Abstract                 = {Exploiting the added value of the ensemble of high-resolution model simulations provided by the Med-CORDEX coordinated initiative, an updated assessment of Mediterranean extreme precipitation events as represented in different observational, reanalysis and modelling datasets is presented. A spatiotemporal characterisation of the long-term statistics of extreme precipitation is performed, using a number of different diagnostic indices. Employing a novel approach based on the timing of extreme precipitation events a number of physically consistent subregions are defined. The comparison of different diagnostics over the Mediterranean domain and physically homogeneous sub-domains is presented and discussed, focussing on the relative impact of several model configuration features (resolution, coupling, physical parameterisations) on the performance in reproducing extreme precipitation events. It is found that the agreement between the observed and modelled long-term statistics of extreme precipitation is more sensitive to the model physics, in particular convective parameterisation, than to other model configurations such as resolution and coupling.},
  Copublication            = {16: 9 It, 1 De, 4 Fr, 1 Serbia, 1 Es},
  Doi                      = {10.1007/s00382-016-3245-x},
  ISSN                     = {1432-0894},
  Keywords                 = {Extreme precipitation; Mediterranean climate; Regional climate modelling;},
  Owner                    = {hymexw},
  Timestamp                = {2017.09.25},
  Url                      = {https://doi.org/10.1007/s00382-016-3245-x}
}