Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Cohuet, J.-B., Romero, R., Homar, V., Ducrocq, V. and Ramis, C.
Abstract:
The Mediterranean basin is regularly affected by severe weather associated with deep convection. Although convective systems are usually linked to coastal orography, some severe thunderstorms develop and mature over the sea. A recent example is the severe thunderstorm that affected the island of Mallorca in the afternoon of 4 October 2007. The storm formed early in the morning offshore of Murcia, and steadily became organized into a squall line. Arriving in Palma city, this squall line produced severe gusts, heavy rain and several tornadoes. The initiation and evolution of convection in these kinds of maritime events depend on both synoptic and mesoscale features. Representing such interactions is a challenge for numerical weather prediction. The aim of this study is to determine the prominent factors involved in the initiation and evolution of the damaging squall line, by means of high resolution numerical experiments. We also focus on squall line mesovortices to explain the potential for tornado development and the role of Mallorcan orography on their evolution. Simulations performed with the mesoscale model Méso-NH allowed relevant mechanisms for initiation and development of the strong squall line to be identified. The squall line initiates in an area with conditional instability, characterized by a cut-off and a southerly jet aloft and by moist, warm air at low-levels along a front. In addition, the area of low-level convergence offshore of Murcia, associated with the front and enhanced by a low downstream of the Atlas range, was shown to be crucial during the early stage of the convective system. The dry layer in the mid-troposphere and the strong sheared environment provide elements for understanding the development of such a damaging squall line. Moreover, a very high resolution experiment (600 m mesh) gave a very realistic representation of the squall line, including mesovortices ahead of the gust front, which confirmed the potential of this strong convective system for the genesis of small-scale vortices that may precede tornado development. A sensitivity experiment pointed out the prominent role of Mallorcan orography in straightening mesovortices approaching Palma city, and provided interesting elements for the understanding of the localization of tornadoes that occurred on 4 October 2007
Reference:
Cohuet, J.-B., Romero, R., Homar, V., Ducrocq, V. and Ramis, C., 2011: Initiation of a severe thunderstorm over the Mediterranean SeaAtmospheric research, 100, 603-620.
Bibtex Entry:
@Article{Cohuet2011,
  Title                    = {Initiation of a severe thunderstorm over the Mediterranean Sea},
  Author                   = {Cohuet, J.-B. and Romero, R. and Homar, V. and Ducrocq, V. and Ramis, C.},
  Journal                  = {Atmospheric research},
  Year                     = {2011},

  Month                    = {June},
  Number                   = {4},
  Pages                    = {603-620},
  Volume                   = {100},

  Abstract                 = {The Mediterranean basin is regularly affected by severe weather associated with deep convection. Although convective systems are usually linked to coastal orography, some severe thunderstorms develop and mature over the sea. A recent example is the severe thunderstorm that affected the island of Mallorca in the afternoon of 4 October 2007. The storm formed early in the morning offshore of Murcia, and steadily became organized into a squall line. Arriving in Palma city, this squall line produced severe gusts, heavy rain and several tornadoes. The initiation and evolution of convection in these kinds of maritime events depend on both synoptic and mesoscale features. Representing such interactions is a challenge for numerical weather prediction. The aim of this study is to determine the prominent factors involved in the initiation and evolution of the damaging squall line, by means of high resolution numerical experiments. We also focus on squall line mesovortices to explain the potential for tornado development and the role of Mallorcan orography on their evolution. Simulations performed with the mesoscale model Méso-NH allowed relevant mechanisms for initiation and development of the strong squall line to be identified. The squall line initiates in an area with conditional instability, characterized by a cut-off and a southerly jet aloft and by moist, warm air at low-levels along a front. In addition, the area of low-level convergence offshore of Murcia, associated with the front and enhanced by a low downstream of the Atlas range, was shown to be crucial during the early stage of the convective system. The dry layer in the mid-troposphere and the strong sheared environment provide elements for understanding the development of such a damaging squall line. Moreover, a very high resolution experiment (600 m mesh) gave a very realistic representation of the squall line, including mesovortices ahead of the gust front, which confirmed the potential of this strong convective system for the genesis of small-scale vortices that may precede tornado development. A sensitivity experiment pointed out the prominent role of Mallorcan orography in straightening mesovortices approaching Palma city, and provided interesting elements for the understanding of the localization of tornadoes that occurred on 4 October 2007},
  Copublication            = {5: 2 Fr, 3 Es},
  Doi                      = {10.1016/j.atmosres.2010.11.002},
  Owner                    = {hymexw},
  Timestamp                = {2016.01.08},
  Url                      = {http://www.sciencedirect.com/science/article/pii/S0169809510003054}
}