Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Edouard, S., Vincendon, B. and Ducrocq, V.
Abstract:
Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.
Reference:
Edouard, S., Vincendon, B. and Ducrocq, V., 2017: Ensemble-based flash-flood modelling: taking into account hydrodynamic parameters and initial soil moisture uncertaintiesJournal of Hydrology.
Bibtex Entry:
@Article{Edouard2017,
  Title                    = {Ensemble-based flash-flood modelling: taking into account hydrodynamic parameters and initial soil moisture uncertainties},
  Author                   = {Edouard, S. and Vincendon, B. and Ducrocq, V.},
  Journal                  = {Journal of Hydrology},
  Year                     = {2017},

  Abstract                 = {Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.},
  Copublication            = {3: 3 Fr},
  Doi                      = {10.1016/j.jhydrol.2017.04.048},
  Keywords                 = {Flash-floods; Uncertainty; Ensemble; Hydrodynamic parameters; Initial soil moisture;},
  Owner                    = {hymexw},
  Timestamp                = {2017.09.08},
  Url                      = {https://doi.org/10.1016/j.jhydrol.2017.04.048}
}