Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Guérémy, J.-F., Laanaia, N. and Céron, J.-P.
Abstract:
Seasonal predictability of local precipitation is rather weak in the mid-latitudes. This is the case when assessing the skill of the seasonal forecast of Heavy Precipitating Event (HPE) extreme occurrence over the French Mediterranean coast during the fall season. Tropics to extra-tropics teleconnection patterns do appear when averaging analyzed fields over the years characterised by a frequency of HPE occurrence in the upper 17% of the distribution. A methodology taking weather regime occurrence into account as an intermediate step to forecast HPE extreme occurrence is presented. For the period 1960 to 2001 and four different sets of seasonal forecast, the Economical Value is doubled, compared to the score obtained with the simulated local precipitation data, when using a linear model (Linear Discriminant Analysis in this case) taking simulated 200 hPa velocity potential–stream function regime occurrences as predictors. Interestingly, larger scores are shown for this couple of fields over a large-scale domain including the tropics than for the 500 hPa geopotential height over an Euro–Atlantic domain, despite a tighter link of the latter field to the local precipitation.
Reference:
Guérémy, J.-F., Laanaia, N. and Céron, J.-P., 2012: Seasonal forecast of French Mediterranean heavy precipitating events linked to weather regimesNatural Hazards and Earth System Science, 12, 2389-2398.
Bibtex Entry:
@Article{Gueremy2012,
  Title                    = {Seasonal forecast of French Mediterranean heavy precipitating events linked to weather regimes},
  Author                   = {Guérémy, J.-F. and Laanaia, N. and Céron, J.-P.},
  Journal                  = {Natural Hazards and Earth System Science},
  Year                     = {2012},

  Month                    = {July},
  Number                   = {7},
  Pages                    = {2389-2398},
  Volume                   = {12},

  Abstract                 = {Seasonal predictability of local precipitation is rather weak in the mid-latitudes. This is the case when assessing the skill of the seasonal forecast of Heavy Precipitating Event (HPE) extreme occurrence over the French Mediterranean coast during the fall season. Tropics to extra-tropics teleconnection patterns do appear when averaging analyzed fields over the years characterised by a frequency of HPE occurrence in the upper 17% of the distribution. A methodology taking weather regime occurrence into account as an intermediate step to forecast HPE extreme occurrence is presented. For the period 1960 to 2001 and four different sets of seasonal forecast, the Economical Value is doubled, compared to the score obtained with the simulated local precipitation data, when using a linear model (Linear Discriminant Analysis in this case) taking simulated 200 hPa velocity potential–stream function regime occurrences as predictors. Interestingly, larger scores are shown for this couple of fields over a large-scale domain including the tropics than for the 500 hPa geopotential height over an Euro–Atlantic domain, despite a tighter link of the latter field to the local precipitation.},
  Copublication            = {3: 3 Fr},
  Doi                      = {10.5194/nhess-12-2389-2012},
  Owner                    = {hymexw},
  Timestamp                = {2016.01.07},
  Url                      = {http://www.nat-hazards-earth-syst-sci.net/12/2389/2012/}
}