Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Hally, A., Caumont, O., Garrote, L., Richard, E., Weerts, A., Delogu, F., Fiori, E., Rebora, N., Parodi, A., Mihalovi\'c, A., Ivkovi\'c, M., Deki\'c, L., van Verseveld, W., Nuissier, O., Ducrocq, V., D'Agostino, D., Galizia, A., Danovaro, E. and Clematis, A.
Abstract:
The e-Science environment developed in the framework of the EU-funded DRIHM project was used to demonstrate its ability to provide relevant, meaningful hydrometeorological forecasts. This was illustrated for the tragic case of 4 November 2011, when Genoa, Italy, was flooded as the result of heavy, convective precipitation that inundated the Bisagno catchment. The Meteorological Model Bridge (MMB), an innovative software component developed within the DRIHM project for the interoperability of meteorological and hydrological models, is a key component of the DRIHM e-Science environment. The MMB allowed three different rainfall-discharge models (DRiFt, RIBS and HBV) to be driven by four mesoscale limited-area atmospheric models (WRF-NMM, WRF-ARW, Meso-NH and AROME) and a downscaling algorithm (RainFARM) in a seamless fashion. In addition to this multi-model configuration, some of the models were run in probabilistic mode, thus giving a comprehensive account of modelling errors and a very large amount of likely hydrometeorological scenarios (> 1500). The multi-model approach proved to be necessary because, whilst various aspects of the event were successfully simulated by different models, none of the models reproduced all of these aspects correctly. It was shown that the resulting set of simulations helped identify key atmospheric processes responsible for the large rainfall accumulations over the Bisagno basin. The DRIHM e-Science environment facilitated an evaluation of the sensitivity to atmospheric and hydrological modelling errors. This showed that both had a significant impact on predicted discharges, the former being larger than the latter. Finally, the usefulness of the set of hydrometeorological simulations was assessed from a flash flood early-warning perspective.
Reference:
Hally, A., Caumont, O., Garrote, L., Richard, E., Weerts, A., Delogu, F., Fiori, E., Rebora, N., Parodi, A., Mihalovi\'c, A., Ivkovi\'c, M., Deki\'c, L., van Verseveld, W., Nuissier, O., Ducrocq, V., D'Agostino, D., Galizia, A., Danovaro, E. and Clematis, A., 2015: Hydrometeorological multi-model ensemble simulations of the 4 November 2011 flash-flood event in Genoa, Italy, in the framework of the DRIHM projectNatural Hazards and Earth System Sciences, 15, 537-555.
Bibtex Entry:
@Article{Hally2015,
  Title                    = {Hydrometeorological multi-model ensemble simulations of the 4 November 2011 flash-flood event in Genoa, Italy, in the framework of the DRIHM project},
  Author                   = {Hally, A. and Caumont, O. and Garrote, L. and Richard, E. and Weerts, A. and Delogu, F. and Fiori, E. and Rebora, N. and Parodi, A. and Mihalovi\'c, A. and Ivkovi\'c, M. and Deki\'c, L. and van Verseveld, W. and Nuissier, O. and Ducrocq, V. and D'Agostino, D. and Galizia, A. and Danovaro, E. and Clematis, A.},
  Journal                  = {Natural Hazards and Earth System Sciences},
  Year                     = {2015},

  Month                    = {March},
  Number                   = {3},
  Pages                    = {537-555},
  Volume                   = {15},

  Abstract                 = {The e-Science environment developed in the framework of the EU-funded DRIHM project was used to demonstrate its ability to provide relevant, meaningful hydrometeorological forecasts. This was illustrated for the tragic case of 4 November 2011, when Genoa, Italy, was flooded as the result of heavy, convective precipitation that inundated the Bisagno catchment. The Meteorological Model Bridge (MMB), an innovative software component developed within the DRIHM project for the interoperability of meteorological and hydrological models, is a key component of the DRIHM e-Science environment. The MMB allowed three different rainfall-discharge models (DRiFt, RIBS and HBV) to be driven by four mesoscale limited-area atmospheric models (WRF-NMM, WRF-ARW, Meso-NH and AROME) and a downscaling algorithm (RainFARM) in a seamless fashion. In addition to this multi-model configuration, some of the models were run in probabilistic mode, thus giving a comprehensive account of modelling errors and a very large amount of likely hydrometeorological scenarios (> 1500).
The multi-model approach proved to be necessary because, whilst various aspects of the event were successfully simulated by different models, none of the models reproduced all of these aspects correctly. It was shown that the resulting set of simulations helped identify key atmospheric processes responsible for the large rainfall accumulations over the Bisagno basin. The DRIHM e-Science environment facilitated an evaluation of the sensitivity to atmospheric and hydrological modelling errors. This showed that both had a significant impact on predicted discharges, the former being larger than the latter. Finally, the usefulness of the set of hydrometeorological simulations was assessed from a flash flood early-warning perspective.},
  Copublication            = {19: 5 Fr, 1 Es, 2 Nl, 8 It, 3 Serbia},
  Doi                      = {10.5194/nhess-15-537-2015},
  Owner                    = {hymexw},
  Timestamp                = {2016.01.07},
  Url                      = {http://www.nat-hazards-earth-syst-sci.net/15/537/2015/}
}