Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Herrmann, M., Auger, P.-A., Ulses, C. and Estournel, C.
Abstract:
Deep convection occurs in oceanic regions submitted to strong atmospheric buoyancy losses and results in the formation of deep water masses (DWF) of the ocean circulation. It shows a strong interannual variability, and could drastically weaken under the influence of climate change. In this study, a method is proposed to monitor quantitatively deep convection using multisensors altimetry and ocean color satellite data. It is applied and evaluated for the well-observed Northwestern Mediterranean Sea (NWMS) case study. For that, a coupled hydrodynamical-biogeochemical numerical simulation is used to examine the signature of DWF on sea level anomaly (SLA) and surface chlorophyll concentration. Statistically significant correlations between DWF annual indicators and the areas of low surface chlorophyll concentration and low SLA in winter are obtained, and linear relationships between those indicators and areas are established. These relationships are applied to areas of low SLA and low chlorophyll concentration computed, respectively, from a 27 year altimetry data set and a 19 year ocean color data set. The first long time series (covering the last 2 decades) of DWF indicators obtained for the NWMS from satellite observations are produced. Model biases and smoothing effect induced by the low resolution of gridded altimetry data are partly taken into account by using corrective methods. Comparison with winter atmospheric heat flux and previous modeled and observed estimates of DWF indicators suggests that those DWF indicators time series capture realistically DWF interannual variability in the NWMS. The advantages as well as the weaknesses and uncertainties of the method are finally discussed.
Reference:
Herrmann, M., Auger, P.-A., Ulses, C. and Estournel, C., 2017: Long-term monitoring of ocean deep convection using multisensors altimetry and ocean color satellite dataJournal of Geophysical Research: Oceans, 122, 1457-1475.
Bibtex Entry:
@Article{Herrmann2017,
  Title                    = {Long-term monitoring of ocean deep convection using multisensors altimetry and ocean color satellite data},
  Author                   = {Herrmann, M. and Auger, P.-A. and Ulses, C. and Estournel, C.},
  Journal                  = {Journal of Geophysical Research: Oceans},
  Year                     = {2017},

  Month                    = {February},
  Number                   = {2},
  Pages                    = {1457-1475},
  Volume                   = {122},

  Abstract                 = {Deep convection occurs in oceanic regions submitted to strong atmospheric buoyancy losses and results in the formation of deep water masses (DWF) of the ocean circulation. It shows a strong interannual variability, and could drastically weaken under the influence of climate change. In this study, a method is proposed to monitor quantitatively deep convection using multisensors altimetry and ocean color satellite data. It is applied and evaluated for the well-observed Northwestern Mediterranean Sea (NWMS) case study. For that, a coupled hydrodynamical-biogeochemical numerical simulation is used to examine the signature of DWF on sea level anomaly (SLA) and surface chlorophyll concentration. Statistically significant correlations between DWF annual indicators and the areas of low surface chlorophyll concentration and low SLA in winter are obtained, and linear relationships between those indicators and areas are established. These relationships are applied to areas of low SLA and low chlorophyll concentration computed, respectively, from a 27 year altimetry data set and a 19 year ocean color data set. The first long time series (covering the last 2 decades) of DWF indicators obtained for the NWMS from satellite observations are produced. Model biases and smoothing effect induced by the low resolution of gridded altimetry data are partly taken into account by using corrective methods. Comparison with winter atmospheric heat flux and previous modeled and observed estimates of DWF indicators suggests that those DWF indicators time series capture realistically DWF interannual variability in the NWMS. The advantages as well as the weaknesses and uncertainties of the method are finally discussed.},
  Copublication            = {4: 3 Fr, 1 Chile},
  Doi                      = {10.1002/2016JC011833},
  ISSN                     = {2169-9291},
  Keywords                 = {Climate and interannual variability; Remote sensing and electromagnetic processes; Water masses; Biogeochemical cycles, processes, and modeling; Sea level: variations and mean; Deep ocean convection; altimetry; Ocean color satellite; Interannual variability; Mediterranean Sea; Dense water;},
  Owner                    = {hymexw},
  Timestamp                = {2017.09.25},
  Url                      = {http://dx.doi.org/10.1002/2016JC011833}
}