Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Khodayar, S., Kalthoff, N. and Kottmeier, C.
Abstract:
The autumn atmospheric conditions associated with Heavy Precipitation Events (HPEs) in the western mediterranean region and differences with respect to the seasonal-mean conditions are investigated. Seasonal high-resolution simulations from the regional climate model COSMO-CLM covering the autumn periods of 2011 and 2012 are used. Atmospheric conditions at five different subdomains surrounding the western Mediterranean are considered, namely France, Italy (North and South), Spain, and North Africa. During HPEs, moisture and instability sources are located generally upstream of the target area over the sea, being transported by fast low-level winds towards the HPE areas. Concentration of high humidity over land and initiation of convection are highly related to the orography in the area. Stronger convective precipitation events occur at mid-level elevations rather than at higher altitudes. The significant increase in atmospheric moisture and instability, identified prior to HPEs, builds up in two different time lengths: atmospheric moisture increase could be traced back to at least 6--24 h before the initiation stage of the event, whereas an increase of Convective Available Potential Energy (CAPE) is detected in the hours prior to the event during the mature stage. The most intense HPEs are in general associated with higher values of integrated water vapour, CAPE, and low-level and mid-tropospheric wind speed. During HPEs in all subdomains, the dominant precipitation peak occurs between 1200 and 1800 UTC suggesting that convective precipitation prevails in most HPEs. The diurnal cycle of integrated water vapour during the mature stage of HPEs shows that the atmosphere remains wetter than average for most of the period and that only a decrease is seen after the afternoon precipitation peak. Negligible CAPE characterizes mean-seasonal conditions while the classical diurnal cycle with the peak in the early afternoon and much higher mean values occur during HPE events. Despite significant differences in the precipitation distribution and characteristics of the investigated subdomains, similar mechanisms are identified in relation to HPE environments and considerable contrasts compared to the mean-seasonal conditions.
Reference:
Khodayar, S., Kalthoff, N. and Kottmeier, C., 2016: Atmospheric conditions associated with heavy precipitation events in comparison to seasonal means in the western mediterranean regionClimate Dynamics.
Bibtex Entry:
@Article{Khodayar2016,
  Title                    = {Atmospheric conditions associated with heavy precipitation events in comparison to seasonal means in the western mediterranean region},
  Author                   = {Khodayar, S. and Kalthoff, N. and Kottmeier, C.},
  Journal                  = {Climate Dynamics},
  Year                     = {2016},

  Abstract                 = {The autumn atmospheric conditions associated with Heavy Precipitation Events (HPEs) in the western mediterranean region and differences with respect to the seasonal-mean conditions are investigated. Seasonal high-resolution simulations from the regional climate model COSMO-CLM covering the autumn periods of 2011 and 2012 are used. Atmospheric conditions at five different subdomains surrounding the western Mediterranean are considered, namely France, Italy (North and South), Spain, and North Africa. During HPEs, moisture and instability sources are located generally upstream of the target area over the sea, being transported by fast low-level winds towards the HPE areas. Concentration of high humidity over land and initiation of convection are highly related to the orography in the area. Stronger convective precipitation events occur at mid-level elevations rather than at higher altitudes. The significant increase in atmospheric moisture and instability, identified prior to HPEs, builds up in two different time lengths: atmospheric moisture increase could be traced back to at least 6--24 h before the initiation stage of the event, whereas an increase of Convective Available Potential Energy (CAPE) is detected in the hours prior to the event during the mature stage. The most intense HPEs are in general associated with higher values of integrated water vapour, CAPE, and low-level and mid-tropospheric wind speed. During HPEs in all subdomains, the dominant precipitation peak occurs between 1200 and 1800 UTC suggesting that convective precipitation prevails in most HPEs. The diurnal cycle of integrated water vapour during the mature stage of HPEs shows that the atmosphere remains wetter than average for most of the period and that only a decrease is seen after the afternoon precipitation peak. Negligible CAPE characterizes mean-seasonal conditions while the classical diurnal cycle with the peak in the early afternoon and much higher mean values occur during HPE events. Despite significant differences in the precipitation distribution and characteristics of the investigated subdomains, similar mechanisms are identified in relation to HPE environments and considerable contrasts compared to the mean-seasonal conditions.},
  Copublication            = {3: 3 De},
  Doi                      = {10.1007/s00382-016-3058-y},
  ISSN                     = {1432-0894},
  Keywords                 = {Heavy precipitation events; Mediterranean region; HyMeX; Seasonal conditions; Atmospheric water vapour;},
  Owner                    = {hymexw},
  Timestamp                = {2016.04.05},
  Url                      = {http://dx.doi.org/10.1007/s00382-016-3058-y}
}