Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Poljak, G., Prtenjak, M. T., Kvakic, M., Strelec Mahovic, N. and Babic, K.
Abstract:
The northeastern (NE) Adriatic in the northern Mediterranean is the area with (i) the highest frequency of thunderstorms in Croatia, and (ii) frequent appearances of sea breeze (SB) along the coast. This study investigates the impact of the combined large-scale wind (associated with particular synoptic conditions) and the SB on the moist convection development over the NE Adriatic. The four selected cases were (i) chosen on the basis of a daytime moist convection; (ii) supplemented by one of the dominant large-scale winds with seaward (NE, NW) and landward (SW, SE) directions and (iii) simulated by WRF numerical model. The near-surface wind patterns consisted of SBs along the coastline, generated a narrow eastward-moving convergence zone (CZ) along the area if the large-scale wind was less than 9 m s−1 (below 500 hPa). Apart from the low-level CZ, the advection of large-scale wind influenced the lifetime and movement of the initial Cb cells. While the local front collision with the NE wind advection caused the thunderstorm to propagate southward, the CZ and fronts interaction determined the afternoon northwestward storm movement against the NW large-scale wind. Due to particular synoptic background, the thunderstorm event in SE case was the shortest with only a minor impact on the SB. While the origins and locations of storm cells were completely controlled by the low-level CZ and the upward advection of low-level moisture at the SB front, the most typical convective case with SW warm-wet wind only partially supported the SB–Cb interaction.
Reference:
Poljak, G., Prtenjak, M. T., Kvakic, M., Strelec Mahovic, N. and Babic, K., 2014: Wind patterns associated with the development of daytime thunderstorms over IstriaAnnales geophysicae, 32, 401-420.
Bibtex Entry:
@Article{Poljak2014,
  Title                    = {Wind patterns associated with the development of daytime thunderstorms over Istria},
  Author                   = {Poljak, G. and Prtenjak, M. T. and Kvakic, M. and Strelec Mahovic, N. and Babic, K.},
  Journal                  = {Annales geophysicae},
  Year                     = {2014},

  Month                    = {April},
  Pages                    = {401-420},
  Volume                   = {32},

  Abstract                 = {The northeastern (NE) Adriatic in the northern Mediterranean is the area with (i) the highest frequency of thunderstorms in Croatia, and (ii) frequent appearances of sea breeze (SB) along the coast. This study investigates the impact of the combined large-scale wind (associated with particular synoptic conditions) and the SB on the moist convection development over the NE Adriatic. The four selected cases were (i) chosen on the basis of a daytime moist convection; (ii) supplemented by one of the dominant large-scale winds with seaward (NE, NW) and landward (SW, SE) directions and (iii) simulated by WRF numerical model. The near-surface wind patterns consisted of SBs along the coastline, generated a narrow eastward-moving convergence zone (CZ) along the area if the large-scale wind was less than 9 m s−1 (below 500 hPa). Apart from the low-level CZ, the advection of large-scale wind influenced the lifetime and movement of the initial Cb cells. While the local front collision with the NE wind advection caused the thunderstorm to propagate southward, the CZ and fronts interaction determined the afternoon northwestward storm movement against the NW large-scale wind. Due to particular synoptic background, the thunderstorm event in SE case was the shortest with only a minor impact on the SB. While the origins and locations of storm cells were completely controlled by the low-level CZ and the upward advection of low-level moisture at the SB front, the most typical convective case with SW warm-wet wind only partially supported the SB–Cb interaction.},
  Copublication            = {5: 4 Cro, 1 Fr},
  Doi                      = {10.5194/angeo-32-401-2014},
  Keywords                 = {Meteorology and atmospheric dynamics, convective processes, mesoscale meteorology, precipitation},
  Owner                    = {hymexw},
  Timestamp                = {2014.04.30},
  Url                      = {http://www.ann-geophys.net/32/401/2014/angeo-32-401-2014.pdf}
}