Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Sanchez-Gomez, E. and Somot, S.
Abstract:
Regional climate models (RCMs) constitute a powerful tool to study and understand climate variability and change at local scales. Nevertheless, to correctly interpret regional climate simulations, a number of uncertainties need to be considered. In this study, we investigate the so-called Internal Variability (IV) of an RCM. The IV can be defined as the degree of irreproducibility in an RCM solution observed when it is conducted by the same lateral boundary conditions (LBCs) but initialised from different initial states. The main goal of this work is to investigate how the IV affects the cyclone tracks simulated by an RCM over a Mediterranean domain. For standard variables such as sea level pressure, 2 m temperature and precipitation, our results over the Mediterranean region are consistent with studies conducted over other geographical domains: the IV is stronger at the easternmost part of the domain, where the control exerted by the LBCs is weaker; the IV shows a strong seasonal dependence, reaching larger values in summer than in winter. We show here that the IV values associated with the density of cyclone tracks are much stronger than for the other documented variables, reaching more than 50 % of the estimated total variability. Concerning the cyclone characteristics, long travelling tracks are associated to a greatest IV. Within the latter cyclone category, the fast moving cyclones seems to exhibit also larger IV values. A secondary IV maximum is observed for static cyclones with short travelling distances (thermal lows) during the warm season.
Reference:
Sanchez-Gomez, E. and Somot, S., 2016: Impact of the internal variability on the cyclone tracks simulated by a regional climate model over the Med-CORDEX domainClimate Dynamics.
Bibtex Entry:
@Article{Sanchez-Gomez2016,
  Title                    = {Impact of the internal variability on the cyclone tracks simulated by a regional climate model over the Med-CORDEX domain},
  Author                   = {Sanchez-Gomez, E. and Somot, S.},
  Journal                  = {Climate Dynamics},
  Year                     = {2016},

  Abstract                 = {Regional climate models (RCMs) constitute a powerful tool to study and understand climate variability and change at local scales. Nevertheless, to correctly interpret regional climate simulations, a number of uncertainties need to be considered. In this study, we investigate the so-called Internal Variability (IV) of an RCM. The IV can be defined as the degree of irreproducibility in an RCM solution observed when it is conducted by the same lateral boundary conditions (LBCs) but initialised from different initial states. The main goal of this work is to investigate how the IV affects the cyclone tracks simulated by an RCM over a Mediterranean domain. For standard variables such as sea level pressure, 2 m temperature and precipitation, our results over the Mediterranean region are consistent with studies conducted over other geographical domains: the IV is stronger at the easternmost part of the domain, where the control exerted by the LBCs is weaker; the IV shows a strong seasonal dependence, reaching larger values in summer than in winter. We show here that the IV values associated with the density of cyclone tracks are much stronger than for the other documented variables, reaching more than 50 % of the estimated total variability. Concerning the cyclone characteristics, long travelling tracks are associated to a greatest IV. Within the latter cyclone category, the fast moving cyclones seems to exhibit also larger IV values. A secondary IV maximum is observed for static cyclones with short travelling distances (thermal lows) during the warm season.},
  Copublication            = {2: 2 Fr},
  Doi                      = {10.1007/s00382-016-3394-y},
  Keywords                 = {Regional climate modelling; Uncertainties; Internal variability; Mediterranean cyclones;},
  Owner                    = {hymexw},
  Timestamp                = {2017.09.25},
  Url                      = {https://doi.org/10.1007/s00382-016-3394-y}
}