Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Waldman, R., Somot, S., Herrmann, M., Bosse, A., Caniaux, G., Estournel, C., Houpert, L., Prieur, L., Sevault, F. and Testor, P.
Abstract:
The northwestern Mediterranean Sea is a well-observed ocean deep convection site. Winter 2012-2013 was an intense and intensely documented dense water formation (DWF) event. We evaluate this DWF event in an ensemble configuration of the regional ocean model NEMOMED12. We then assess for the first time the impact of ocean intrinsic variability on DWF with a novel perturbed initial state ensemble method. Finally, we identify the main physical mechanisms driving water mass transformations. NEMOMED12 reproduces accurately the deep convection chronology between late January and March, its location off the Gulf of Lions although with a southward shift and its magnitude. It fails to reproduce the Western Mediterranean Deep Waters salinification and warming, consistently with too strong a surface heat loss. The Ocean Intrinsic Variability modulates half of the DWF area, especially in the open-sea where the bathymetry slope is low. It modulates marginally (3-5\%) the integrated DWF rate, but its increase with time suggests its impact could be larger at interannual timescales. We conclude that ensemble frameworks are necessary to evaluate accurately numerical simulations of DWF. Each phase of DWF has distinct diapycnal and thermohaline regimes: during preconditioning, the Mediterranean thermohaline circulation is driven by exchanges with the Algerian basin. During the intense mixing phase, surface heat fluxes trigger deep convection and internal mixing largely determines the resulting deep water properties. During restratification, lateral exchanges and internal mixing are enhanced. Finally, isopycnal mixing was shown to play a large role in water mass transformations during the preconditioning and restratification phases.
Reference:
Waldman, R., Somot, S., Herrmann, M., Bosse, A., Caniaux, G., Estournel, C., Houpert, L., Prieur, L., Sevault, F. and Testor, P., 2017: Modeling the intense 2012-2013 dense water formation event in the northwestern Mediterranean Sea: evaluation with an ensemble simulation approachJournal of Geophysical Research: Oceans, 122, 1297-1324.
Bibtex Entry:
@Article{Waldman2017,
  Title                    = {Modeling the intense 2012-2013 dense water formation event in the northwestern Mediterranean Sea: evaluation with an ensemble simulation approach},
  Author                   = {Waldman, R. and Somot, S. and Herrmann, M. and Bosse, A. and Caniaux, G. and Estournel, C. and Houpert, L. and Prieur, L. and Sevault, F. and Testor, P.},
  Journal                  = {Journal of Geophysical Research: Oceans},
  Year                     = {2017},

  Month                    = {February},
  Number                   = {2},
  Pages                    = {1297-1324},
  Volume                   = {122},

  Abstract                 = {The northwestern Mediterranean Sea is a well-observed ocean deep convection site. Winter 2012-2013 was an intense and intensely documented dense water formation (DWF) event. We evaluate this DWF event in an ensemble configuration of the regional ocean model NEMOMED12. We then assess for the first time the impact of ocean intrinsic variability on DWF with a novel perturbed initial state ensemble method. Finally, we identify the main physical mechanisms driving water mass transformations. NEMOMED12 reproduces accurately the deep convection chronology between late January and March, its location off the Gulf of Lions although with a southward shift and its magnitude. It fails to reproduce the Western Mediterranean Deep Waters salinification and warming, consistently with too strong a surface heat loss. The Ocean Intrinsic Variability modulates half of the DWF area, especially in the open-sea where the bathymetry slope is low. It modulates marginally (3-5\%) the integrated DWF rate, but its increase with time suggests its impact could be larger at interannual timescales. We conclude that ensemble frameworks are necessary to evaluate accurately numerical simulations of DWF. Each phase of DWF has distinct diapycnal and thermohaline regimes: during preconditioning, the Mediterranean thermohaline circulation is driven by exchanges with the Algerian basin. During the intense mixing phase, surface heat fluxes trigger deep convection and internal mixing largely determines the resulting deep water properties. During restratification, lateral exchanges and internal mixing are enhanced. Finally, isopycnal mixing was shown to play a large role in water mass transformations during the preconditioning and restratification phases.},
  Copublication            = {10: 10 Fr},
  Doi                      = {10.1002/2016JC012437},
  ISSN                     = {2169-9291},
  Keywords                 = {Marginal and semi-enclosed seas; Numerical modeling; Water masses; Turbulence, diffusion, and mixing processes; Air-sea interactions; Ocean deep convection; Dense water transformations; Ocean modelling; Mediterranean Sea; Ensemble approach; Model evaluation;},
  Owner                    = {hymexw},
  Timestamp                = {2017.09.25},
  Url                      = {http://dx.doi.org/10.1002/2016JC012437}
}