Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Waldman, R., Herrmann, M., Somot, S., Arsouze, T., Benshila, R., Bosse, A., Chanut, J., Giordani, H., Sevault, F. and Testor, P.
Abstract:
Winter 2012–2013 was a particularly intense and well-observed Dense Water Formation (DWF) event in the Northwestern Mediterranean Sea. In this study, we investigate the impact of the mesoscale dynamics on DWF. We perform two perturbed initial state simulation ensembles from summer 2012 to 2013, respectively, mesoscale-permitting and mesoscale-resolving, with the AGRIF refinement tool in the Mediterranean configuration NEMOMED12. The mean impact of the mesoscale on DWF occurs mainly through the high-resolution physics and not the high-resolution bathymetry. This impact is shown to be modest: the mesoscale does not modify the chronology of the deep convective winter nor the volume of dense waters formed. It however impacts the location of the mixed patch by reducing its extent to the west of the North Balearic Front and by increasing it along the Northern Current, in better agreement with observations. The maximum mixed patch volume is significantly reduced from 5.7 ± 0.2 to 4.2 ± 0.6 × 1013 m3. Finally, the spring restratification volume is more realistic and enhanced from 1.4 ± 0.2 to 1.8 ± 0.2 × 1013 m3 by the mesoscale. We also address the mesoscale impact on the ocean intrinsic variability by performing perturbed initial state ensemble simulations. The mesoscale enhances the intrinsic variability of the deep convection geography, with most of the mixed patch area impacted by intrinsic variability. The DWF volume has a low intrinsic variability but it is increased by 2–3 times with the mesoscale. We relate it to a dramatic increase of the Gulf of Lions eddy kinetic energy from 5.0 ± 0.6 to 17.3 ± 1.5 cm2/s2, in remarkable agreement with observations.
Reference:
Waldman, R., Herrmann, M., Somot, S., Arsouze, T., Benshila, R., Bosse, A., Chanut, J., Giordani, H., Sevault, F. and Testor, P., 2017: Impact of the mesoscale dynamics on ocean deep convection: The 2012–2013 case study in the northwestern Mediterranean SeaJournal of Geophysical Research: Oceans, 122, 8813–8840.
Bibtex Entry:
@Article{Waldman2017a,
  Title                    = {Impact of the mesoscale dynamics on ocean deep convection: The 2012–2013 case study in the northwestern Mediterranean Sea},
  Author                   = {Waldman, R. and Herrmann, M. and Somot, S. and Arsouze, T. and Benshila, R. and Bosse, A. and Chanut, J. and Giordani, H. and Sevault, F. and Testor, P.},
  Journal                  = {Journal of Geophysical Research: Oceans},
  Year                     = {2017},

  Month                    = {November},
  Number                   = {11},
  Pages                    = {8813–8840},
  Volume                   = {122},

  Abstract                 = {Winter 2012–2013 was a particularly intense and well-observed Dense Water Formation (DWF) event in the Northwestern Mediterranean Sea. In this study, we investigate the impact of the mesoscale dynamics on DWF. We perform two perturbed initial state simulation ensembles from summer 2012 to 2013, respectively, mesoscale-permitting and mesoscale-resolving, with the AGRIF refinement tool in the Mediterranean configuration NEMOMED12. The mean impact of the mesoscale on DWF occurs mainly through the high-resolution physics and not the high-resolution bathymetry. This impact is shown to be modest: the mesoscale does not modify the chronology of the deep convective winter nor the volume of dense waters formed. It however impacts the location of the mixed patch by reducing its extent to the west of the North Balearic Front and by increasing it along the Northern Current, in better agreement with observations. The maximum mixed patch volume is significantly reduced from 5.7 ± 0.2 to 4.2 ± 0.6 × 1013 m3. Finally, the spring restratification volume is more realistic and enhanced from 1.4 ± 0.2 to 1.8 ± 0.2 × 1013 m3 by the mesoscale. We also address the mesoscale impact on the ocean intrinsic variability by performing perturbed initial state ensemble simulations. The mesoscale enhances the intrinsic variability of the deep convection geography, with most of the mixed patch area impacted by intrinsic variability. The DWF volume has a low intrinsic variability but it is increased by 2–3 times with the mesoscale. We relate it to a dramatic increase of the Gulf of Lions eddy kinetic energy from 5.0 ± 0.6 to 17.3 ± 1.5 cm2/s2, in remarkable agreement with observations.},
  Copublication            = {10: 10 Fr},
  Doi                      = {10.1002/2016JC012587},
  ISSN                     = {2169-9291},
  Keywords                 = {Marginal and semi-enclosed seas; Numerical modeling; Water masses; Turbulence, diffusion, and mixing processes; Air/sea interactions; Ocean deep convection; Mesoscale; Ocean modeling; Mediterranean Sea; Ensemble approach; Model evaluation;},
  Owner                    = {hymexw},
  Timestamp                = {2018.01.19},
  Url                      = {http://dx.doi.org/10.1002/2016JC012587}
}