Home About HyMeX
Motivations
Science questions
Observation strategy
Modelling strategy
Target areas
Key documents
Organisation
International coordination
Working groups
Task teams
National contributions
Endorsements
Resources
Database
Data policy
Publications
Education and summer schools
Drifting balloons (BAMED)
SOP web page
Google maps data visualisation
Workshops Projects
ASICS-MED
MOBICLIMEX
MUSIC
IODA-MED
REMEMBER
FLOODSCALE
EXAEDRE
Offers Links Contacts
Science & Task teams
Science teams
Task teams
Implementation plan
Coordination
International Scientific Steering Committee (ISSC)
Executive Committee for Implementation and Science Coordination (EC-ISC)
Executive Committee - France (EC-Fr)
HyMeX France
HyMeX Italy
HyMeX Spain
Archive
by Willis, P., Mertikas, S., Argus, D. F. and Bock, O.
Abstract:
Due to its specific geographical location as well as its geodetic equipment (DORIS, GNSS, microwave transponder and tide gauges), the Gavdos station in Crete, Greece is one of the very few sites around the world used for satellite altimetry calibration. To investigate the quality of the Gavdos geodetic coordinates and velocities, we analyzed and compared here DORIS and GPS-derived results obtained during several years of observations. The DORIS solution is the latest ignwd11 solution at IGN, expressed in ITRF2008, while the GPS solution was obtained using the GAMIT software package. Current results show that 1–2 mm/yr agreement can be obtained for 3-D velocity, showing a good agreement with current geophysical models. In particular, the agreement obtained for the vertical velocity is around 0.3–0.4 mm/yr, depending on the terrestrial reference frame. As a by-product of these geodetic GPS and DORIS results, Zenith Tropospheric Delays (ZTDs) estimations were also compared in 2010 between these two techniques, and compared to ECMWF values, showing a 6.6 mm agreement in dispersion without any significant difference between GPS and DORIS (with a 97.6% correlation), but with a 13–14 mm agreement in dispersion when comparing to ECMWF model (with only about 90% correlation for both techniques). These tropospheric delay estimations could also provide an external calibration of the tropospheric correction used for the geophysical data of satellite altimetry missions.
Reference:
Willis, P., Mertikas, S., Argus, D. F. and Bock, O., 2013: DORIS and GPS monitoring of the Gavdos calibration site in CreteAdvances in Space Research, 51, 1438-1447.
Bibtex Entry:
@Article{Willis2013,
  Title                    = {DORIS and GPS monitoring of the Gavdos calibration site in Crete},
  Author                   = {Willis, P. and Mertikas, S. and Argus, D. F. and Bock, O.},
  Journal                  = {Advances in Space Research},
  Year                     = {2013},

  Month                    = {April},
  Number                   = {8},
  Pages                    = {1438-1447},
  Volume                   = {51},

  Abstract                 = {Due to its specific geographical location as well as its geodetic equipment (DORIS, GNSS, microwave transponder and tide gauges), the Gavdos station in Crete, Greece is one of the very few sites around the world used for satellite altimetry calibration. To investigate the quality of the Gavdos geodetic coordinates and velocities, we analyzed and compared here DORIS and GPS-derived results obtained during several years of observations. The DORIS solution is the latest ignwd11 solution at IGN, expressed in ITRF2008, while the GPS solution was obtained using the GAMIT software package. Current results show that 1–2 mm/yr agreement can be obtained for 3-D velocity, showing a good agreement with current geophysical models. In particular, the agreement obtained for the vertical velocity is around 0.3–0.4 mm/yr, depending on the terrestrial reference frame. As a by-product of these geodetic GPS and DORIS results, Zenith Tropospheric Delays (ZTDs) estimations were also compared in 2010 between these two techniques, and compared to ECMWF values, showing a 6.6 mm agreement in dispersion without any significant difference between GPS and DORIS (with a 97.6% correlation), but with a 13–14 mm agreement in dispersion when comparing to ECMWF model (with only about 90% correlation for both techniques). These tropospheric delay estimations could also provide an external calibration of the tropospheric correction used for the geophysical data of satellite altimetry missions.},
  Copublication            = {4: 2 Fr, 1 Gr, 1 USA},
  Doi                      = {10.1016/j.asr.2012.08.006},
  Keywords                 = {DORIS; GPS; Satellite altimetry calibration; Gavdos; Troposphere},
  Owner                    = {hymexw},
  Timestamp                = {2014.03.06},
  Url                      = {http://www.sciencedirect.com/science/article/pii/S0273117712005467}
}