## WG3 Report

### Heavy Precipitation Climatology:

- → Long-term rainfall space-time series
- → 100 YR GAUGES
- → 50 YR NETWORKS
- →<30 YR SATELLITE
- → 10 YR RADAR
  - →INCL. PRECIP MEASUREMENT OVER MEDITERRANEAN SEA?
- → Relationship between weather regimes/cyclogeneses and HPEs
- → <u>Documentation of the space-time structure, nature, organization and life cycle of precipitating</u> systems with respect mediterranean orography and Sea surface characteristics
- Factors leading to HPE:
- → Better understanding the role of upper-level dynamics on HPEs
- →Time horizon 24 to 72 h link / complementarity with other projects T-NAWDEX/ THORPEX
- → Characterization of the low-level mesoscale environment:
- → Upstream observations over the Mediterranean Sea
- → Identifying mechanisms leading to high-accumulated surface rainfall
- → Understanding the role of the complex orography of the region
- → midlevel dry air <-> formation of cold pools
- → Air-sea fluxes / vertical profiles over sea



- Origin and Measurements of Moisture:
- → Moisture monitoring
- → 3D structure of moisture, together with wind observations (hor. wind; radio sondes; wind profiler; RASS; lidar)
- → <u>Identification of water vapour origin</u>
- **☞ Impact of Mediterranean Sea on severe precipitation event:s**
- → Impact of the sea surface temperature and thermal heat content on strong atmospheric events (HPE) and cyclogenesis.
- → Study of the air-sea coupling : simultaneous observations of atmospheric and boundary layers
- → Validation of surface flux parameterizations

- Role of aerosols in producing / inhibiting HPE:
- → Role of aerosols as CCN/ICN
- → Radiative effect of aerosols
- **☞ Modelling and Predictability issues (QPF):**
- → What kind of observations do we need to improve physical parameterizations of mesoscale models?
- → Mesoscale data assimilation within cloudy and precipitating systems (over the Med. Sea)
- → <u>Predictability of HPEs + associated uncertainties</u>
- → QPF at hydrologically relevant space-time scales (perhaps including statistical downscaling



## **☞ LOP/EOP/SOP strategy**

→ SOP : Sept-Oct.-Nov. 2011

→ EOP: 2010- 2013 → LOP: 2010-2020

WG3 - Heavy precipitation, floods and flash-floods



# Expected results

Short term FORECASTING of HP and FF

Long term predicting of HP and FF

Assess the impact of the climatic change or anthropic changes

observation and modelling strategies



### (data)

- → Hydrometry
- → Historical & Paleo hydrometeorology
- → Regional analysis
- → Post-event analysis
- → Remote sensing techniques for flooding-river characterization
- → Sediment yields and pollutant fluxes in intermittent rivers

### (processes)

- → Hydrologic experiments at the hillslope scale
- → Karst and flooding river interactions
- → Initial soil moisture characterization
- → Linking the hydrologic response and the landscape characteristics

### (radar rainfall)

- → Quantitative precipitation estimates (QPE) with high spatial and temporal resolution
- → Quantitative precipitation estimates (QPE) errors
- → Nowcasting techniques

#### (physical modelling)

- → Test on flash flood processes
- → Scaling effects & aggregative representation
- → Evaluation procedures for quantitative precipitation forecasts (QPF)
- → Use of real-time (QPE) and (QPF)
- → Data assimilation.

### (statistical modelling)

- → Extreme rainfall assessment
- → Intercomparison of extreme rainfall and flood distribution assessment
- → Heavy precipitation and flood frequency analysis in a non stationary context
- → Climate change impact on frequency and intensity of heavy precipitation and flash-flood extremes



# Flash flood observation

# (data collection and data base construction over large range of space-time scales, incl error characterization)

- → Hydrometry
- → Historical & Paleo hydrometeorology
- → Regional analysis
- → Post-event analysis (incl. human)
- → Remote sensing techniques for flooding-river characterization
- → Sediment yields and pollutant fluxes in intermittent rivers

### (processes, including infiltration excess)

- → Hydrologic experiments at the hillslope scale
- → Karst and flooding river interactions
- → Initial soil moisture characterization
- → Linking the hydrologic response and the <u>landscape characteristics</u> (incl human aspects)

### (multi-sensor rainfall estimation, incl radar)

- → Quantitative precipitation estimates (QPE) with high spatial and temporal resolution
- → Quantitative precipitation estimates (QPE) errors
- → Space-time variation of rainfall microstructure (disdrometer network; polarimetric radar)
- → Nowcasting techniques



modelling

## (deterministic hydrological modelling)

- → Develop hydrological models that do not need calibration
- → How to properly validate hydrological models (equifinality problem)
- → Test on flash flood processes
- → Scaling effects & aggregative representation
- → Evaluation procedures for quantitative precipitation forecasts (QPF)
- → Use of real-time (QPE) and (QPF)
- → Data assimilation
- → Climate change impact

### (statistical modelling)

- → Extreme rainfall assessment
- → Intercomparison of extreme rainfall and flood distribution assessment
- → Heavy precipitation and flood frequency analysis in a non stationary context
- → Stochastic generation of heavy precipitation (events + fields)
- → Climate change impact on frequency and intensity of heavy precipitation and flash-flood extremes

## (Conclusions)

- → Specific aspects of flash flood observation and modelling (e.g. space-time scales concerned; rare but extreme events; short-term forecasting; risk assessment).
- → Common scientific questions with Round Table "Continental Hydrological Cycle": hillslope processes, landscape characteristics, soil moisture; similar observation and modeling strategies at small scales; impact of climate change.
- → Relatively little attention at this stage to international aspects; efforts will have to be made; existing observatories: OHM-CV, EU-projects (e.g. HYDRATE).

### (Perspectives; remaining questions)

- → How can the hydrological working groups organize their HyMeX observation strategy in terms of a SOP / EOP / LOP?
- → Is there a need to reorganize the currently identified hydrological research topics?
- → How can we incorporate the hydrological / flash flood research community in other countries around the Mediterranean arc?