

http://www.hymex.org/

WG2: Hydrological Continental Cycle

I. Braud ⁽¹⁾, A. Chanzy ⁽²⁾

(1) CEMAGREF, UR HHLY, Lyon, France –(2) UME EMMAH, INRA, Avignon, France

*Hydrological cycle in the Mediterranean eXperiment

HyMeX <u>Motivations</u>, societal stakes

❑ Water resources: a critical issue because freshwater is rare and unevenly distributed in space and time with few short duration heavy precipitation events and long drought periods

□The watersheds have characteristic features of the Mediterranean environment: medium to small size catchments, with a mountainous upstream area and a quite flat outlet downstream

□High anthropogenic pressure: recent change in land use and land cover, strong urbanization and population growth, particularly in the coastal areas

>2 m/y
 0.2-0.5 m/y
 1-2 m/y
 0.1-0.2 m/y
 0.5-1 m/y
 < 0.1 m/y

 30 M Mediterranean people, particularly in the South and East, are deprived of access to drinking water = 60% of the worldwide population lacking drinking water
 During the second half of the 20th century, water demand has increased twofold (Source: Plan Bleu).

Main Scientific Topics

Hydrological continental cycle

Key questions:

What is the variability of the components of the water cycle (precipitation, evaporation, runoff, transport, etc) within a context of global climate change ?

What are the impacts on the water resources ?

Better understanding of the long-term water cycle over the Mediterranean basin: variability and trend

Water budget of the Mediterranean Sea

Event

Seasonal

Annual

Main Objectives of WG2

Improve our understanding and the modelling of the water cycle components over the whole Mediterranean basin from the event to the decadal time scale

In order :

HyMeX

 \rightarrow To quantify fresh water inputs (river and groundwater flows) to the Mediterranean sea (link with WG1)

 \rightarrow To quantify evapotranspiration (coupling with the atmosphere)

 \rightarrow To quantify soil moisture (coupling variable with the atmosphere, initial condition for flash flood events)

 \rightarrow As a basis for water resources management

- \rightarrow Drought early warning system
- \rightarrow Adaptation to global change

HyMeX Scientific questions addressed in WG2

- <u>WG2-SQ1</u>: How to set up and develop an hydro-meteorological framework allowing the simulation of the water cycle over the whole Mediterranean basin?
- <u>WG2-SQ2</u>: Can we improve the regional simulation of the continental hydrological cycle by better accounting for specific Mediterranean characteristics?
- <u>WG2-SQ3</u>: How will the continental hydrological cycle evolve in relation to global change?

HyMeX

WG2 overview

Data base : Climate Surface Human activity Hydrology

Coupling Ocean Atmosphere Human activity Global change Hydrometeorological model Mediterranean Basin

Alps Pyrences Bakans Ba

Regional Modelling

Experiment

HyMeX

Observation strategy

 « Nested » approach necessary to tackle the whole range of processes and interactions and estimate budgets

Enhanced existing observatories and operational observing systems in the key regions of high-impact events: *budgets* and process studies

(+ dedicated short field campaigns)

Enhanced current operational observing system over the whole Mediterranean basin: *budgets*

(data access \rightarrow 'data policy')

HyMeX

WG2-SQ1 : hydro-meterorological modelling framework of the water cycle over the whole Mediterranean basin/LOP

 \Box Describe the water budget on the whole Mediterranean watershed at high resolution (~1 to 10 km) with the quantification of :

 \checkmark the amount of freshwater arriving to the sea from river streamflow, karstic and coastal aquifers.

- \checkmark the evapotranspiration
- ✓ the soil moisture

Considering two levels of investigation

✓ The Whole mediterranean area (implementation over the LOP)
 ✓ Regional scale (large river basin) to take profit of already
 implemented models (LOP/EOP)

□Open the modelling framework to updates (process modelling, parameters) from process analysis (SQ2) and experimental results (IIP).

- ✓ Anthropogenic activities (urbanization, irrigation, pumping)
- ✓ Coupling with Ground water

✓ Improvement of mediterranean ecosystems parameterization

HyMeX WG2-SQ1 : Data collection at he whole Mediterranean basin scale?

Climatic data

 \checkmark ECMWF reanalysis (70 km, ~15 km in the future) ✓ Solar radiation (SAF land and MSG/SEVERI Products) ✓ Vapour pressure products (willing of developping new tools) Land use ✓ ECOCLIMAP II, POSTEL 300m land Use map ✓ Water use by human activities : Irrigation, urban areas **Digital Elevation Model** ✓ American DEM model □Soil map \checkmark European soil map at the 1/1000000 scale ✓ FAO map for non european countries ✓ Which strategy to gather existing national or regional soil map? ✓ <u>Surface albedo (remote sensing)</u> **Aquifer geometry and hydrological data** (harmonisation at the internat. level) □Soil moisture and vegetation

✓ satellite products (SMOS, ASCAT, LAI, Fcover, FAPAR...)

<u>WG2-SQ2</u>: Can we improve the continental hydrological cycle simulation through a better account of Mediterranean specificities? (EOP)

Q1: Water balance of typical Mediterranean vegetation covers
Q2: *Water and energy budget of urbanised areas*Q3: Improving the water balance of aquifers
Q4: Quantify the contribution of karstic sources and coastal aquifers to the Mediterranean
Q5: Impact of soil moisture redistribution by topography on the water balance
Q6: Snow processes

Q7: Anthropogenic influence (irrigation, groundwater pumping, water consumption)

HyMeX EOP: Sites and supersites-

- Observation strategy based on nested sub-catchments from 10 km² (densely instrumented sites) to 100-500 km² (less densely instrumented sites)
- Several super-sites in France (also associated with WG3)
 - OHM-CV obs. Q1, Q5 (in relation with WG3)
 - MEDHYCIS obs. Q3 (karst)
 - Crau-Camargue obs. Q1, Q3, Q4 and Q7 in connection with groundwater
 - Draix/Bléone area for erosion studies
- Localised sites in other countries
 - Various location for evapotranspiration monitoring (France, Italy) Q1
 - Monitoring of some karstic sources Q4

HyMeXHyMeX Sites/Pilot sites/Super sites

HyMeX WG2-SO3 Impact of Global change on the continental hydrological cycle

- Build a database of high resolution regional climate scenarios for the region, in order to run impact models.
- Improve our knowledge on socio economic feed backs induced by global change.
- Provide land-use change scenarios (and past-reconstruction) consistent with the socio-economic scenario
- Improve impact models on both physical and socio economic aspects.

- Climate change : A warm topic \rightarrow A lot of proposals
- Nothing on the socio economy side
 - Socio-economic feed back
 - Land-use change scenarios

HyMeX Link with Social sciences (WG5)

- Water balance : Characterisation of water uses (drinking water, irrigation, waste water, etc..)
 - Amount of water
 - Water origin
 - Temporal and spatial dynamics
- Global Change : Combine land use changes with Climatic Changes (Past and future)
 - Evolution of land use and associated surface properties in relation with hydrological processes (surface sealing, crop type, irrigation)
 - Impact of political options on land use evolution
 - Typology of land use management practices (irrigation, farms management,
 - urbanization, etc..). Derivation of statistical representations of these practices
 - Temporality and spatial evolution of these practices
- \Rightarrow To be connected to hydrometorological models thanks to improved parameterization representing land use and management practices

Interest of hydrometeorological model output for social sciences ?

- Feedback of management practices on water ressources.
- Risk and vulnerability Indicators

Thanks for your attention