

WG5 Social vulnerability and adaptive capacity I. Ruin, C. Lutoff & C. Llassat

With contributions from H. Hoff, D. Saurí, F.Vinet, O. Petrucci, M. Llasat-Botija, A. Chanzy, M. Grimalt

Bologna meeting, June 8-10

Hydrological continental cycle

Heavy Precipitation Flash-flooding

I- Monitor and analyze the evolution of social and ecological vulnerability to deficit and exceedance of water

2- Observe social ability to cope with short-fuse and slow rise weatherrelated events

Motivation : Increasing human exposure

Evolution of population in Catalonia (people/km²) and Languedoc-Roussillon

HyMeX

Motivation : High social and economical impacts of extreme weather

175 flood events between 1990 and 2006

Llasat et al., 2010

Main economical damages in northern countries:

 ⇒ about 30,000 millions euros mainly in Italy, France, Romania, Turkey and Spain

Human losses mainly in southern mediterranean countries → 4,500 casualties mainly in Algeria, Morocco, Egypt and Italy

Key questions

• What methods, indicators and sensors may be used to monitor short-term and long-term adaptation strategies at various space scales and for different cultural contexts?

• What lessons can be learnt from the experience of different societies and individuals to better cope with climate change and hydrometeorological extreme events around the Mediterranean Sea?

• How can we make these lessons beneficial and relevant for all Mediterranean communities?

• How can we define plausible scenarios (land use, economy,...) to quantify the impact of global change on the Mediterranean hydrological cycle and extremes?

• How is vulnerability of humans and ecosystems going to change under future global change?

Program strategy Monitoring vulnerability factors and adaptive capacity

Long-term Observation Period: LOP 2011-20

Enhanced Observation Period: EOP 2011-14
Learn from interdisciplinary post-event investigation
Observe social ability to cope with intense weather events at various scales

LOP (1): Build a comprehensive database of flood impacts

Objectives

- Study the relationship between socio-economic and ecological impacts and the hydro-meteorological event's characteristics
- Create a loss of life model in extreme events

Observation and data collection

- Time and location of fatalities and injuries VS # of people exposed
- Circumstances of the accidents : activity of the victims, timing of the warnings, hydro-meteorological parameters
- Socio-demographic characteristics of the victim : age, gender, place of residence, marital status, professional activity...
- Quantify economic losses and impacts on ecosystem services
- Document social system's perturbations at various scales

HyMeX LOP: Loss of life circumstances during the september 2002 flash floods in the Gard

Ruin et al., 2008. Journal of Hydrology, vol. 361, 199-213.

Post-event investigation (Gard, 2002)

- investigation on circumstances of the accidents
- georeferencing
- calculate watersheds surface area
- Hydro-meteorological simulation (Liquid)

HyMeX LOP: Loss of life circumstances during the september 2002 flash floods in the Gard

Post-event investigation (Gard, 2002)

- investigation on circumstances of the accidents
- georeferencing
- calculate watersheds surface area
- Hydro-meteorological simulation (Liquid)

Ruin et al., 2009. Flood risk management: Research and Practice, 1005-1012.

HyMeX LOP: Monitor economic losses and impacts on ecosystem services

Source: CCR - from Vinet, 2007

9

LOP: Analysis of the drought impact and ecosystem services

Ecosystem Services (ES): the conditions and processes through which ecosystems sustain and fulfill human life provides a link between humans and the environment :

- food, wood and biofuel production
- carbon sequestration
- climate protection
- protection from floods and other hazards
- water provisioning or purification
- erosion reduction (maintaining soil productivity and preventing siltation of reservoirs e.g.)
- biodiversity

Dry-spell	Drought
<i>Occurrence:</i> [2/3 years]	<i>Occurrence:</i> [1/10 years]
Two out of three years	One year out of ten
<i>Impact:</i>	<i>Impact:</i>
Yield reduction	Complete crop failure
<i>Cause:</i>	<i>Cause:</i>
Rainfall deficit of 2-5 week periods during crop	Seasonal rainfall below minimum seasonal plant
growth	water requirement

Table 3.1. Differences between droughts and dryspells according to Falkenmark et al. (2009)

10

LOP (2) Monitor vulnerability factors

Objective :

- Identify relevant vulnerability factors for water-related issues (water exceedance and deficit) at various scales (local to global)
- Map their evolution at various spatial and temporal scales

Observation and data collection

- Quantify exposure in space and time :
 - Static : infrastructures and people at work or at home
 - Dynamic : people in transit (motorists, pedestrians, transient, outdoorsmen)
- Socio-demographic and economic attributes : age, gender, livelihoods...
- Psycho-socio-cultural factors : Hazard knowledge, risk perception, event history, social norms, values and belief...
- Public policy and risk management : prevention and crisis management measures and practices

HyMeX LOP: Monitor dynamic exposure through traffic flow

Relation between peak flow and roads cut in the Vidourle catchment during the 2005 event

12

Local hours

HyMeX LOP: Monitor dynamic exposure through traffic flow

Relation between peak flow and roads cut in the Vidourle catchment during the 2005 event

Trafic du mois de Septembre 2005 pour les routes de faible trafic

Monthly roads traffic in the Gard department

HyMeX EOP: Learn from interdisciplinary postevent investigation

Objective:

• Observe social ability to cope with intense weather events

Methods and data collection

- Identify quantitative and qualitative indices of social perturbation / adaptation within informal social networks and official systems
- Identify the social entities who are able to organize themselves to cope with the event
- Document the location, nature and timing of their reaction and compare them to the local dynamic of the event
- **Data**: media reports, crisis logbooks, Web 2.0, internal emails, web server logs, post-event interviews...

EOP: Post event data collection strategy

HyMeX

Time of the Hydro-meteorological precursors

= Time lag between the beginning of heavy rainfall and the peak discharge

- = physical time maximum available for reaction
- = vary with the surface of the catchment (BV)

EOP: Post event data collection strategy

HyMeX

Time of the Hydro-meteorological precursors

= Time lag between the beginning of heavy rainfall and the peak discharge

- = physical time maximum available for reaction
- = vary with the surface of the catchment (BV)

Anticipation time

= Time lag between human response and the time of the peak discharge

EOP: Post event data collection strategy

Time of the Hydro-meteorological precursors

= Time lag between the beginning of heavy rainfall and the peak discharge

- = physical time maximum available for reaction
- = vary with the surface of the catchment (BV)

Anticipation time

= Time lag between human response and the time of the peak discharge

HyMeX

Observation unit = I transition event between daily routine and crisis

- a group of individuals who organize themselves to cope with the crisis
- a unit of IOP activities

14

EOP: Compare social anticipation time across events

The coupling of social and physical response scales

Creutin et al., 2009 - Meteorological Applications, vol. 16, 115-125

15

15

Re-analyze

HyMeX

- Gard 2002 ; Fella (Italie) 2003

- 4 municipalities in catchments of various surfaces

- 43 actions at individual, community and institutional scales

HyMeX Enhance the synergy with hydrometeorological pilot sites

Bassin versant méditerranéen

