Use of HYPROM to assess the Moraca river water potential

G. Pejanovic, S. Nickovic, V. Djurdjevic, M. Vujadinovic, A. Vukovic

South East European Climate Change Center, Belgrade, Serbia
World Meteorological Organization, Geneva, Switzerland
Institute of Meteorology, Faculty of Physics, Belgrade, Serbia
Integrated modelling system

Atmosphere:
NMM E non-hydrostatic model

Land:
NOAH land surface model

Hydrology:
HYPROM 2D – surface runoff
HYPROM 1D – river routing

DATASETS:
HYDRO1k USGS topography
FAO soil texture data
USGS land use data
HYdrology PROgnostic Model

Governing equations:

\[
\begin{align*}
\frac{\partial u}{\partial t} &+ u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + g \left[\frac{\partial h}{\partial x} + S_{fx} - S_{0,x} \right] = 0 \\
\frac{\partial v}{\partial t} &+ u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + g \left[\frac{\partial h}{\partial y} + S_{fy} - S_{0,y} \right] = 0 \\
\frac{\partial h}{\partial t} &+ \frac{\partial (hu)}{\partial x} + \frac{\partial (hv)}{\partial y} + H = 0
\end{align*}
\]

- Dynamically treatment of an overland flow (NO kinematic approximation!)
- Numerically stable implicit time scheme for the friction term
- New numerical technique for preventing grid decoupling noise
- Suitable for long term and flash flood simulations
- Computationally efficient

NOAH Land Surface Model

Liquid water content forecast: Darcy’s Law

\[
\frac{\partial W_l}{\partial t} = \frac{\partial}{\partial z} \left(K_w \frac{\partial W_l}{\partial z} + \gamma_w \right) + R_{ex}
\]

diffusivity

\[
K_w = K_{ws} \left(\frac{W_l}{W_s} \right)^{b+2}
\]

conductivity

\[
\gamma_w = \gamma_{ws} \left(\frac{W_l}{W_s} \right)^{2b+3}
\]

- \(K_{ws}\) saturated diffusivity
- \(\gamma_{ws}\) saturated conductivity
- \(W_s\) porosity (max. soil moisture content)
- \(b\) Clapp-Horneberger constant
The Moraca river (Montenegro)

Moraca basin: 3200 km²
Podgorica sub-basin: 2600 km²

Heavy rain event on 5th Feb. 2003
Surface runoff and streamlines valid at: 052005FEB2003

Surface runoff and streamlines valid at: 072005FEB2003
Water budget components (NMM E)
six months accumulations: November 2002 – April 2003
Sensitivity to soil type

<table>
<thead>
<tr>
<th>parameter</th>
<th>Clay Loam (09)</th>
<th>Bedrock (15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sat. diffusivity</td>
<td>0.113×10^{-4}</td>
<td>0.136×10^{-3}</td>
</tr>
<tr>
<td>sat. conductivity</td>
<td>2.45×10^{-6}</td>
<td>1.41×10^{-4}</td>
</tr>
<tr>
<td>porosity</td>
<td>0.465</td>
<td>0.20</td>
</tr>
<tr>
<td>CH constant</td>
<td>8.17</td>
<td>2.79</td>
</tr>
</tbody>
</table>
The Moraca river discharge – Podgorica sub-basin

case 2003

model vs. observations discharge 2003

<table>
<thead>
<tr>
<th>BIAS</th>
<th>MAE</th>
<th>RMSE</th>
<th>CC</th>
<th>FEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.43</td>
<td>35.48</td>
<td>55.48</td>
<td>0.94</td>
<td>0.87</td>
</tr>
</tbody>
</table>
case 2008

water budget components
2008 accumulations

- precipitation
- surface runoff
- base runoff
- evapotranspiration
- snow melt

model vs. observations discharge 2008

- HYPROM
- Podgorica station

Days vs. discharge (m³/s)
Instead of the conclusions – future work

HYPROM + NCEP’s NMM-B

large river basins

climate studies

Hyprom NCEP's NMM-B

Dynamical ground water flow

www.seevccc.rs