Evolution and growth of perturbations in a convection-resolving model

Francesco Uboldi[1], Anna Trevisan[2], Silvio Davolio[2]
(1) consultant, Novate Milanese, Italy; (2) ISAC-CNR, Bologna, Italy

The predictability of convective systems is limited by their highly non-linear and unstable character, worsened by non-linear thresholds proper of moist thermodynamics. A breeding technique is used to estimate the evolution of small perturbations in the convection-resolving, non-hydrostatic atmospheric model MOLOCH. Perturbation growth is characterized by estimating the doubling time. Linearity indicators are used to estimate the time period of validity of the tangent linear approximation. Planned development of the work concerns the possibility of controlling error growth by assimilating appropriate observations.

MOLOCH is a convection-resolving, non-hydrostatic model developed by the atmospheric dynamics group of ISAC-CNR (Bologna). The control trajectory is a MOLOCH simulation of the heavy precipitation event occurred on 26 September 2007. The simulation is performed at about 2.3 km resolution over a domain including an Alpine area and portions of both the Ligurian Sea and the Adriatic Sea, and using GFS analysis/forecasts as initial and boundary conditions. The circulation at 500 hPa is characterized by a deep trough approaching the western Alpine region which favours the development of a shallow orographic cyclone centred over the Gif of Genoa. A low level south-easterly jet flows over the Adriatic Sea. The Venice area is affected by intense convective precipitation, mostly during the morning; different scattered convective cells at the beginning, a well organized Meso-scale Convective System later.

Spatial correlation: $\rho(x) = \frac{\langle x \cdot y \rangle - \langle x \rangle \langle y \rangle}{\sqrt{\langle x^2 \rangle - \langle x \rangle^2} \sqrt{\langle y^2 \rangle - \langle y \rangle^2}}$

where: $\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\langle y \rangle = \frac{1}{n} \sum_{i=1}^{n} y_i$, $\langle x^2 \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i^2$, $\langle y^2 \rangle = \frac{1}{n} \sum_{i=1}^{n} y_i^2$.

The spatial correlation is computed for each variable separately. The scalar product is defined as:

$\langle x \cdot y \rangle = \sum_{i=1}^{n} x_i y_i$.

The correlation is normalized by the product of the standard deviations at each grid point:

$\rho(x) = \frac{\langle x \cdot y \rangle}{\sigma_x \sigma_y}$

where: $\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$, $\sigma_y = \sqrt{\langle y^2 \rangle - \langle y \rangle^2}$.

Non-linear evolution of states perturbed by organized bred vectors

The growth of perturbations is characterized by estimating the growth exponent λ and the doubling time $T_d = e^{\lambda t}$.

The logarithm of the amplification factor after n time steps is approximately linear in time during a period of linear growth regime. Free non-linear evolution of two “opposed” perturbations (same direction, different sign) after a breeding period (3h): At initial time: $x = x_0$, $y = x_0$. At later times: $|x| = e^{\lambda t} x_0$. Linearity indicators (Hohenegger et al., BAMS 2006) are used to estimate the time period of validity of the tangent linear approximation along the non-linear evolution.

Spatial correlation: $\rho(x) = e^{\lambda t}$

where: $\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\langle y \rangle = \frac{1}{n} \sum_{i=1}^{n} y_i$, $\langle x^2 \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i^2$, $\langle y^2 \rangle = \frac{1}{n} \sum_{i=1}^{n} y_i^2$.

The spatial correlation is computed for each variable separately. The scalar product is defined as:

$\langle x \cdot y \rangle = \sum_{i=1}^{n} x_i y_i$.

Two experiments are shown, starting at 01h30 and at 06h00, before two different episodes of convection (the second one more intense). In the first one, linearity is lost at 04h00, 2.5h after the initial time: $T_d = 2.5h$. In the second one the spatial correlation remains below the threshold until the end of the simulation. Even considering a stabilizing effect of the boundary forcing after 10h00, the estimate is still large: $T_d > 4.0h$.

The doubling time is estimated by a 2h running mean of the logarithm of the amplification factor, for the first experiment: $T_d = 2.5h$; for the second one: $T_d = 2.0h$.

The second convective episode, yet more intense, appears more stable and predictable, probably because large scale forcing has a more important role.

Preliminary results:

- Bred vectors quickly get organized in spatially coherent structures. The growth of small errors in the linear regime is not immediately disrupted by strongly non-linear processes present in moist convection.
- Strongly non-linear(izable) processes (moist thermodynamics, phase transitions during convection) seem to affect predictability when they succeed in determining non-linearity in the evolution of the horizontal velocity field. Other variables (temperature, pressure, vertical velocity, humidity and concentrations of condensed phases) are more directly affected. Wind seems then to be the best candidate as a control variable.
- Estimated values of T_d and T_2 also lead to some optimism, at least for very short prediction range. Estimates, though, are dependent on the amplitude of the initial perturbation. A larger perturbation amplitude requires a larger domain to avoid (delay) the stabilizing effect of boundary forcing: we are currently working with the larger domain shown on the right.